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We give the result of a bootstrap of the p and Pomeranchuk trajectories in pion-pion scattering, using the
unitarized strip approximation. In this scheme, we construct an analytic, crossing-symmetric, unitary ampli
tude with Regge asymptotic behavior. This is achieved by starting with strips in which the double spectral
function is parametrized by Regge poles, in the way devised by Chew and Jones, and adding the elastic
double spectral functions in each channel calculated by the Mandelstam iteration method. Unitarity is
imposed using the E/D method with inelasticity. We Gnd self-consistent trajectories which bear a fair
resemblance to those found experimentally, at least for small ~t ~, and obtain a p of width 155 MeV, which
is very much better than earlier calculations. This and related improvements are due to the proper inclusion
of Pomeranchon exchange. The requirement of self-consistency does not 6x the trajectories uniquely, but
the range of solutions is comparatively narrow, with 0.32&0.,(0)&0.69. There are still some unsatisfactory
features in comparison with the phenomenological trajectories: We always 6nd that 0.,(~))—1, there is a
too rapid increase of Imo. just above threshold, and the trajectories do not rise much above Reo, =1. We
draw some conclusions about the prospects for this sort of S-matrix dynamics.

I. INTRODUCTION

'N a previous paper' we have described a method of
~ - carrying out bootstrap calculations using "the
unitarized strip approximation. '" In this model we
parametrize the asymptotic strip of the double spectral
functions by Regge poles, in the way devised by Chew
and Jones, ' and then use the Mandelstam' iteration
method to calculate the nearby parts of the elastic
double spectral functions in each channel. These are the
corners of the double spectral functions shown in Fig. 1
of Ref. 1.The sum of the strip and corner contributions
to both the left- and right-hand cuts of the s-channel
partial-wave amplitudes are calculated, and unitarity
is imposed by the Frye-Warnock inelastic N/D equa-
tions. A parameter search is then undertaken to try
and make the input Regge functions coincide with the
output Regge functions generated by the N/D equa-
tions. If they can be made consistent a bootstrap of the
trajectories has been achieved.

The advantages of this model over earlier calcula-
tions, ' using the "new strip approximation" of Chew
and Jones, ' are that by including the corners of the
double spectral functions we automatically include

* Supported by 'the National Research Council of Canada.
' P. D. B. Collins and R. C. Johnson, Phys. Rev. 177, 2472

(1969). A fuller set of references to earlier work can be found in
this paper.

~ An account of the background to this work can be found in
P. D. B. Collins and E. J. Squires, I/egge Poles in Particle Physics
(Springer-Verlag, Berlin, 1968).

' G. F. Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).
4 S. Mandelstam, Phys. Rev. 112, 1344 (1958).
' G. Frye and R. L. Warnock, Phys. Rev. 123, 1478 (1961).
OP. D. B. Collins and V. L. Teplitz, Phys. Rev. 140, B663

(1965).
' P. D. B.Collins, Phys. Rev. 142, 1163 (1966).
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higher Born approximations to the amplitude in the
left-hand cut of the partial-wave amplitudes. (The first
Born approximation, i.e., "the potential, " consists of
the t and I-chan-nel strips. ) It has been shown' that it is
essential to include such higher Born approximations in
nonrelativistic potential-scattering calculations, and we
might expect that this will also be the case in S-matrix
theory. Their inclusion is particularly important when
there are repulsive potential. s, and we know that the
Pomeranchuk (P) trajectory gives rise to a repulsive
potential. ' At the same time a knowledge of the elastic
double spectral functions enables us (by crossing sym-
metry) to calculate the inelasticity in the s-channel
strip region, and this inelasticity can be included in the
Frye-Warnock N/D equations.

In Ref. 1 we used this method to bootstrap the p
trajectory in the m-m. scattering amplitude, and were
able to obtain self-consistent trajectories. Since, how-
ever, the p-exchange force also generated a I' trajectory
which was not included in the input, the bootstrap wa, s
incomplete.

In this paper we describe a bootstrap of the p and I'
together. This was not really possible in the new strip
approximation because the P repulsion prevented solu-
tion of the N/D equations unless a rather doubtful
"normalization" procedure was used. ' On iterating
the potential, this difhculty is overcome, and good self-
consistent trajectories are obtained.

Also in Ref. 1 the parametrization of the Regge func-
tions was unsatisfactory since in order to generate suit-
able trajectories n(i), a large peak in Imrr(t) was needed

8 P. D. B. Collins and R. C. Johnson, Phys. Rev. 169, ]222
(1968).

9 G. F. Chew, Phys. Rev. 140, B1427 (1965).
~o G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964).
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"cutoff" parameters s~ and 6, and the scale factor t,
which is held 6xed at 200m„'. The object is to solve the
equa, tions of this section with as many trajectories as
are needed for self-consistency in x-~ scattering, and to
check that the choice of s~ and 6 is not of great impor-
tance. In Sec. III we describe our numerical results.

0.4—

-100 0
s, t (m~~)

100 200

0.2
Bey

-0 ql
-100

I

0
s, t (m~~ )

100 200

Fzo. 1. Self-consistent p-meson trajectory and residue functions,
with a linear form for Ima(t), and with Rey(t) arranged to be small
where Ima(t) reaches its maximum. The input parametrizations
are the full line, and the output is the dashed lines. The parameters
are u(~) = —0.34, cI ——6.2)&10 'm~, t~=8m~, ted=127.2m~',
c2 ——12.73, X=0.1,d =275m ', a2 =205m, b2 ——130m~~, s1——1000m~~,
and 6=5m„'.

Bali's work suggests & si, with
l Rey(t) l

small near
the peak of Imn(t) at t&t Howeve. r, examination of
the numerical N/D solutions reveals that without super-
convergence constraints on Bi"(s) (see Sec. V), it is
impossible to get n, (~ ) below about —0.35. If we insert
this value in (2.20) and choose parameters for Imn(t)
in (2.23) such that Reu(3=m, ')=1, we find that the
resultant trajectory is very flat for t= 0. This flatness is
not characteristic of our output trajectories. It would
seem therefore that unlike Bali's calculation, our Imn
is being cut oQ for s&(s~. We thus take t to be a free
parameter which we adjust until the input and output
trajectories match as well as possible near 1=0. We
shall see in Sec. III that rather small values of t

(t «si) are called for. This has the benefit that the
output trajectories have roughly the same sort of
slope at t=0 as is found in phenomenological Gts.

To suppress spurious bumps in Di"(s,t), the parame-
trization of Imp(t) is adjusted so that

l
Rer(t) l

is very
small where Imn(t) reaches its maximum, i.e., for t= t .
A suitable form is that used in Ref. 1, namely,

IIL SELF-CONSISTENT TRAJECTORIES

In Fig. 1 we show a self-consistent p trajectory with
the new parametrization. Evidently, there is good
agreement between the input and output trajectory and
residue functions below threshold. Figure 2 shows that
the corresponding partial-wave cross sections do not
agree so well, however, and the widths of the input and
output p disagree by a factor of 2. Two encouraging
improvements of these results over those of Ref. 1 are
that n(~) is much lower, giving s, steeper trajectory
with the physical intercept (0.57),"and secondly that
the requirement that lRey(t) l

be small where Imn(/)
is peaked imposes a fairly stringent condition on the
parameters of y(t), and leads to a much more nearly
unique bootstrapped p trajectory. The extreme values
of n„(0) for which we were able to find self-consistent
solutions with satisfactory crossing symmetry (i.e. ,

with no unacceptable structure in the t-channel cross
section) were 0.3 and 0.72.

In (2.13) the parameter si is the point where Regge
asymptotic behavior takes over from the low-energy
resonance strip region, and, as discussed in Ref. 15, both
~V and D have logarithmic singularities there. On the
other hand, in (2.5) we have cut off unitarity more
gently at sJ in calculating the double spectral function,
and so in Fig. 3 we show the effect of using the same
cuto6 in the N/D equations, i.e., we replace pi(s) in
(2.13) by

200

(mb) 100—

Evidently this slightly Inore consistent procedure
makes very little quantitative difference.

c2x'(x —d)
Imp(t)=, x =t—4m '. (2.24)

(x a2) '+b22—
'0 5

~s (m~)
10

g(] A /) (I+co i+26)/6) —i—
Thus, for each trajectory we have nine free parame-

ters u(~), ci, ti), t, c2, X, d, a2, and b2, as well as the two

The cutoff function 0 in Imu(t) is chosen to be of the
form

(2.25)

Fzo. 2. (a) Input (t-channel) and (b) output (s-channel) cross
sections in the I=/=1 state, showing the self-consistent p-meson
resonances for the case given in Fig. 1. The input and output p
widths are F; =135 MeV and I',„~=265 MeV.

"See, e.g., G. Hohler, H. Schaile, and P. Sonderegger, Phys.
Letters 20, 79 (1966).

's G. F. Chew, Phys. Rev. 130, 1264 (1964).
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Just as in the p bootstrap described in Ref. 1, to get
self-consistency a large residue is necessary. Indeed it is
necessary in the present work to use input residues which
are larger than those in Ref. 1, in order to haverr, (oo)(0
with n, (0)=0.57 and Rerr, (30)= 1, since with the new
parametrization of n(t) only a limited curvature of
Rea(t) is permitted. With large residues, crossed-
channel unitarity is violated for /&0.3, compared with
(&0.2 in Ref. 1.

The nature of the m-~ crossing matrix ensures that
the p-exchange force generates an output trajectory in
the I=O channel which lies higher than the p. This we
identify with the P, and remark that m-m dynamics
gives perhaps the best evidence for the supposition that
there is a high-lying Regge pole with the usual sort of
slope and vacuum quantum numbers.

Thus, for self-consistency, we must include both p
and P in the crossed channels.

Figure 4 shows a self-consistent solution with both P
and p. The two trajectories are almost parallel (the P
is marginally the steeper), di8ering essentially only in
their asymptotic values [np(~ )= 0.15, n, (~ )= —0.34j,
and intercepts at t=0. The p has n, (0)= 0.55 if the P
saturates but does not exceed the unitarity bound
nr (0)= 1.0. Again the restrictions imposed on the input
residue parameters by demanding self-consistency both
of the trajectories below threshold, and of the cross
sections above threshold, permit only a relatively small
range of bootstrap solutions. The extrema are given in
Table I. It appears that the inclusion of the P force
slightly narrows the range of acceptable n, (0) to between
0.32 and 0.69. If we demand the phenomenological
value rr, (0)= 0.57,"we get np(0) = 1.1.

It is by no means trivial that there is any acceptable
solution, let alone a reasonably unique one, because in
earlier calculations, using just the first Born approxima-
tion to the left-hand cut, the presence of the strong
repulsion from P exchange produced nonsensical results
(see Ref. 7). Iteration of the potential has corrected
this, and has produced perfectly sensible output tra-
jectories. The proper inclusion of the P has had the
desirable results of making the self-consistent&':tra-
jectories slightly steeper, and the residues smaller and
falling off more rapidly as t —& —~. This is partly be-
cause after iteration there is a net attraction from the E,

Ima(t)

Rec

-IOO 0
s, t (m~~)

IOO 200

Bey
0.2

-0,2— army~(t)

-o,e
-IOO

I

0
s, t (m~)

I

IOO

Pro. 4. Self-consistent p and Pomeranchuk trajectory and
residue functions, in each case with a linear form for Immit(t), and
with Rey(t) arranged to be small where Imu(t) reaches its maxi-
mum. Input is the full line, and output the dashed line. Since the
output trajectories residues are almost parallel, the E and p have
the following input parameters in common: tg=8m 2, c1——1.4
X10 'm~ 2, t~=135.8m ', ) =0.1, 4=5m ', s1=1000m~~,
d =212m ', a2 =208m ', and b2 ——182m ', they dier in the parame-
ters o.p( o) 0.35 ctp(~) 015 c2 =11.33, and c2"=8.20.

so that the attractive force needed from the p can be
reduced. Also the repulsive part of the P reduces
B~'(s) near threshold (see Fig. 5) and hence decreases
X~(s). In turn, this reduces the width of the output p
through (2.19).

The input and output partial-wave cross sections are
compared in Fig. 6, and it is seen that a tolerable
(though not perfect) self-consistency has been achieved.
It is particularly gratifying that a symmetrical reso-
nance shape has been obtained. The output p-meson
width of 155 MeV is only a few percent greater than the
most likely physical value, " and a good deal better
than has resulted from previous e6orts. '

The results are almost independent of s~, provided
that it is greater than about 1000@x ', as Fig. 7 shows,
and we feel justified in ceasing to regard it as a parame-
ter of the model. Figures 8 and 9 demonstrate that a

Re a

I.o-
TABLE I. Extreme values of the 2' and p trajectory intercepts

possible for a crossing-symmetric bootstrap solution. Also given
are the corresponding trajectory slopes, in units of GeV ~.

0 np(o) n, '(o)

»0 5
-80 40 0

s (mar )
2

Pro. 3. Meets on the output trajectory of Pig. 1 of cutting o6
the N/D integrals of Eqs. (2.13) and {2.14) using a modi6ed
phase-space factor, as described in the text. The three cases are
for (a) 6=0, (bl n=5ng ', and (cl a=tpm '.

Upper
Lower

1.20 1.02
0.72

0.69
0.32

1.00
0.69

'6 N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H.
Rosenfeld, P. Soding, C. G. kohl, and M. Roos, Rev. Mod.
Phys. 41, 109 {1969).
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'e=l
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0.02
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-0.04

0,060 500 lQOC

s (rn~}

F 5. The potential function B~'(s), de6ned in (2.12), for /= I
with the exchanged p and I' parameters as .or

IG. . e
for the self-consistent

h n Fi . 4. The four curves correspond to the followjngCaSe S O'fry In Ig.
potentials: (a) iterated p exchange alone, ( ) ex g
erst Born approximation, (c) iterated P exchange alone, an
the total potential (a)+(c) that produces the output trajectories
of Fig. 4.

fair matching of the high- and low-energy parts of the
amplitude has been attained. With more trouble (and
a good deal more computer time) an exact matc ing
could probably be achieved.

There is a good deal of evidence that secondary I=0
and I=1 trajectories (I", p', etc )are .coupled to the
x-m system but in this calculation there was no sign o
such poles, even when they mere included. in the input.
Presumably, if they exist they must be generated in
other channels.

physical width, This is much better than has been
achieved by such calculations previously. Also the end
points of the trajectories are lower, and the slopes c ose
to those found emplrlcaBy.

Self-consistency does not restrict the trajectories
unique y, u e r1 but the range of reasonable self-consistent
trajectories is comparatively narrow. The results are
independent of the strip width s~, which does not act
as a cuto6, but is simply the matching point between
the high- and low-energy regions.

Despite this modicum of success there remain
considerable difhculties with the whole bootstrap
h othesis, because there is now some evidence that
meson trajectories remain straight over quite a large
range of energy, producing several recurrences for s&0,
and cutting several negative integers for s&0, w ere
they result in nonsense dips. ' It may be that the addit-
ion of higher threshold channels, which include externa
particles with spin, is capable of keeping trajectories
1lslng) as anMandelstam" has suggested (see also Re .

gg p)but this is by no means obvious since the forces e-
tween particles with spin must satisfy superconvergence

d't' f unitarity is not to be violated. Otherwise,
if the total spin of the channel mere 5 the trajectories
wou aven =ld h (~)=5—1 due to the Gribov-Pomeran-

=1 and thish k" singularity in the potential at =, an is
violates the Iroissart bound for S&2. The effecct of
such superconvergenceh gence conditions will be to weaken the
forces. Similarly, if the trajectories are to pass through

IV. CONCLUSION

It has proved possible to bootstrap the p and I'
trajectories ln the +-x system, an" to obta j

~ ~ ~

d btain tra ectories
which are quite close to the physical trajectories in their

h
' " 1=0. The difhculty of previous calcula-

0

tions, that the E repulsion gives nonsensical results, has
been overcome by iterating the potential, an as ex-
pec e lt d it results in smaller p,"widths. The input and out-
put widths are in fair agreement (the agreemen t could
probably be improved, but with an order of magnitude
more trouble), and are within a small fraction of the

g (01

as ~P
a

SeO

(Gev )

I.Q

I

500
s, (m2~ )

1

l000

4=l

(mb)
l00-

1

l000 l500

(fff~)

( ) s- and (b) t-channel cross sections in the state I=1=I
for the self-consistent crossing symmetric s
glplltan ou pu p wd tput widths are j.~=135 MeV and I',~~= i

Fxo. '/. Values of a, (s=O) aud du„(s)/dsf, s plotted agatust
the strip vridth, vrith all other parameters held axed at t osesi, t e stnp ~

quoted in Fig. 4.

'78 M d 1 t'm in 1966 Tokyo Summer I.ecAues cw I'bytes&&,an es am,
d*t d b G. Takeda and A. Fujii (%. A. Benjam',

York, j.966), Part II; also, Phys. Rev. NS, 1539 ( ).
'8 V. N. Gribov and g. Va Pomeranchuk, in I'roceed&zgs o I e

Ietorestsoeog Coefsreeco oe Hggjs Seorgy Plsyssos, Goeosu, 1P6Z,
edited by J. Prentki (CERN, Geneva, 1962), p. &2&.
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negative integer values of n, more superconvergence
conditions must be imposed, with a further weakening
eGect.

We have argued in a previous paper" that if con-
tinuously rising trajectories are to be bootstrapped, or
indeed calculated in any sort of "equivalent-potential"
calculation, Imn(s) must be an increasing function of s.
This seems to be in disagreement with the experimental
facts, at least for mesons. For, if the R and T mesons
are on the p trajectory, their small widths show that
Imo. is decreasing at energies above the p mass. We then
have no hope of bootstrapping the trajectory. The quark
model (or some other model which makes very high
threshold channels dominant) might succeed by re-
quiring Imo. to be large above the two-quark threshold.
However, then the p would be a CDD (Castillejo-
Dalitz-Dyson) pole in the e-a. I= 1 partial wave, and we
would not expect to be able to generate it in this sort
of calculation. The comparative success of our computa-
tions may thus be regarded as (rather weak) evidence
against such a quark model.

The other alternative discussed in Ref. 19 is that the
slopes of the Regge trajectories are arbitrary parameters
of the S matrix, which have to be inserted a priori into
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FxG. 8. Plot of the iterated double spectral function p, p"(s,t)
against t at 6xed s for the case of Fig. 4. At sI (=100(bn ') the
iterated double spectral function matches onto the s-channel strip
contribution fairly well.

"P. D. B. Collins, R. C. Johnson, and E. J. Squires, Phys.
Letters 26B, 223 (1908).
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FIG. 9. Inelasticity parameter gI(s) for I= 1 as a function of
s for (a) l=1, (b) l=0.5, and (c) l=0.3, with the parameters of
Fig. 4. At s; it matches reasonably the values calculated from the
asymptotic strip, but unitarity is violated for l(0.3.

one's calculations. So instead of (2.20) we have the dis-

persion relation

1 "Imn(s')
n(s) =a+bs+ — ds'.

7l OS —S

There might, for instance, be a universal slope, b, of
about 1 GeV ', with the dynamics (which is essentially
contained in Imn) responsible only for local variations
from this in the various physical trajectories. But again
the comparative success of our calculations in obtaining
a reasonable slope for the trajectories near t=0 argues
against such a hypothesis.

It still seems reasonable to hope that the sort of cal-
culations we have performed, if extended by the in-
clusion of more channels and the removal of the
Gribov-Pomeranchuk singularities at L= —i, —2, etc.,
may give a good account of trajectories for small

l s~.
But it will obviously involve an inordinate amount of
computation to generalize calculations with this sort of
sophistication to include many coupled channels. And
our results prove that the much simpler, and therefore
more readily generalizable, models of the past, which
used the 6rst Born approximation with a non-Reggeized
exchange, and simply cut off the unitarity integral,
represent very unsatisfactory approximations to the
dynamics. It is clearly going to be very difBcult to make
a really critical test of the bootstrap hypothesis.


